THERMAL EXPANSION AND PHASE TRANSITION

Thermal Expansion

- is the tendency of matter to change in volume in response to a change in temperature
- in expansion, there is a change in the average separation between the atoms in the object
- every linear dimension increases by the same percentage with an increase in temperature

Average Coefficient of Linear Expansion

$$
\alpha=\frac{\Delta L / L_{i}}{\Delta T}
$$

$L_{i} \Rightarrow$ initial length
$L_{f} \Rightarrow$ final length
$\Delta L \Rightarrow L_{f}-L_{i}$
$\alpha \Rightarrow$ coefficient of linear expansion

Thermal expansion of a homogeneous metal washer. As the washer is heated, all dimensions increase. (The expansion is exaggerated in this figure.)

Average Coefficient of Volume Expansion

$$
\beta=\frac{\Delta V / V_{i}}{\Delta T}
$$

$V_{i} \Rightarrow$ initial volume
$V_{f} \Rightarrow$ final volume
$\Delta V \Rightarrow V_{f}-V_{i}$
$\beta \Rightarrow$ coefficient of volume expansion
How about water? How does it behave?

How the density of water at atmospheric pressure changes with temperature.

TABLE 19.2 Average Expansion Coefficients for Some Materials Near Room Temperature

	Average Linear Expansion Coefficient $(\boldsymbol{\alpha})$ $\left({ }^{\circ} \mathbf{C}\right)^{-\mathbf{1}}$	Material	Average Volume Expansion Coefficient $(\boldsymbol{\beta})$ $\left({ }^{\circ} \mathbf{C}\right)^{\mathbf{- 1}}$
Material	24×10^{-6}	Alcohol, ethyl	1.12×10^{-4}
Aluminum	19×10^{-6}	Benzene	1.24×10^{-4}
Brass and bronze	17×10^{-6}	Acetone	1.5×10^{-4}
Copper	9×10^{-6}	Glycerin	4.85×10^{-4}
Glass (ordinary)	3.2×10^{-6}	Mercury	1.82×10^{-4}
Glass (Pyrex)	29×10^{-6}	Turpentine	9.0×10^{-4}
Lead	11×10^{-6}	Gasoline	9.6×10^{-4}
Steel	0.9×10^{-6}	Air at $0^{\circ} \mathrm{C}$	3.67×10^{-3}
Invar (Ni-Fe alloy)	12×10^{-6}	Helium	3.665×10^{-3}
Concrete			

Exercises

- A steel girder is 200 m long at $20^{\circ} \mathrm{C}$. If the extremes of temperature to which it might be exposed are $-30^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$, how much will it contract and expand?
- Rubber has a negative average coefficient of linear expansion. What happens to the size of a piece of rubber as it is warmed?

Exercises

- A certain glass rod is 30.0 cm long by 1.50 cm in diameter. If the temperature of the rod increases by $65^{\circ} \mathrm{C}$, what is the increase in (a) its length, (b) its diameter, and (c) its volume? (Assume that $\alpha=9.00 \times$

- It is shown that $3 \boldsymbol{\alpha}=\beta$, now show that the change in area of a rectangular plate is given by

$$
\Delta A=2 \alpha A_{i} \Delta T
$$

Latent Heat (L)

- is the amount of energy released or absorbed by a chemical substance during a change of state or a phase transition

$$
L \equiv \frac{Q}{m}
$$

$L \Rightarrow$ latent heat
$Q \Rightarrow$ heat
$\mathrm{m} \Rightarrow \mathrm{mass}$

During phase change, the amount of energy transferred depends on the amount of substance involved

Heat transfer in a phase change

- heat entering the substance - (+)
- heat leaving the substance - (-)

$$
Q= \pm m L
$$

- note: both L_{v} and the boiling temperature of a material depend on pressure

The boiling point of water changes with altitude.

- As you go higher, the boiling temperature decreases.
- At sea level, the boiling point of water is $212^{\circ} \mathrm{F}(100$ ${ }^{\circ} \mathrm{C}$).
- As a general rule, the boiling point temperature decreases by I \mathbf{F}° for every 540 feet of altitude ($0.56 \mathrm{C}^{\circ}$ for every 165 meters)
- there is less atmospheric pressure on the surface of liquids

TABLE 20.2 Latent Heats of Fusion and Vaporization

Substance	Melting Point $\left({ }^{\circ} \mathbf{C}\right)$	Latent Heat of Fusion $(\mathbf{J} / \mathbf{k g})$	Boiling Point $\left({ }^{\circ} \mathbf{C}\right)$	Latent Heat of Vaporization $(\mathbf{J} / \mathbf{k g})$
Helium	-269.65	5.23×10^{3}	-268.93	2.09×10^{4}
Nitrogen	-209.97	2.55×10^{4}	-195.81	2.01×10^{5}
Oxygen	-218.79	1.38×10^{4}	-182.97	2.13×10^{5}
thyl alcohol	-114	1.04×10^{5}	78	8.54×10^{5}
Water	0.00	3.33×10^{5}	100.00	2.26×10^{6}
Sulfur	119	3.81×10^{4}	444.60	3.26×10^{5}
Lead	327.3	2.45×10^{4}	1750	8.70×10^{5}
Aluminum	660	3.97×10^{5}	2450	1.14×10^{7}
Silver	960.80	8.82×10^{4}	2193	2.33×10^{6}
Gold	1063.00	6.44×10^{4}	2660	1.58×10^{6}
Copper	1083	1.34×10^{5}	1187	5.06×10^{6}

- latent heat of solidification = latent heat of fusion
- latent heat of vaporization $=$ latent heat of condensation

Specific Heat (c)

- is the heat capacity per unit mass of a substance

Heat Capacity (()

- is the amount of energy needed to raise the temperature of a particular sample of substance by $1{ }^{\circ} \mathrm{C}$

$$
Q=m c \Delta T \quad Q=C \Delta T
$$

$c \Rightarrow$ heat capacity
$Q \Rightarrow$ heat
$\mathrm{m} \Rightarrow$ mass
$\Delta T \Rightarrow$ temperature change

TABLE 20.1	Specific Heats of Some Substances at $\mathbf{2 5}^{\circ} \mathrm{C}$ and Atmospheric Pressure	
	Specific Heat \mathbf{c}	
	J/kg $\cdot{ }^{\circ} \mathbf{C}$	cal/g $\cdot{ }^{\circ} \mathbf{C}$
Substance		
Elemental Solids	900	0.215
Aluminum	1830	0.436
Beryllium	230	0.055
Cadmium	387	0.0924
Copper	322	0.077
Germanium	129	0.0308
Gold	448	0.107
Iron	128	0.0305
Lead	703	0.168
Silicon	234	0.056
Silver		
Other Solids	380	0.092
Brass	837	0.200
Glass	2090	0.50
Ice $\left(-5^{\circ} \mathrm{C}\right)$	860	0.21
Marble	1700	0.41
Wood		
Liquids	2400	0.58
Alcohol $($ ethyl $)$	140	0.033
Mercury	4186	1.00
Water $\left(15^{\circ} \mathrm{C}\right)$		
Gas	2010	0.48
Steam $\left(100^{\circ} \mathrm{C}\right)$		

Phase Transition of Water

- transfer of energy (heat) doesn't result in a change in temperature

A plot of temperature versus energy added when 1.00 g of ice initially at $-30.0^{\circ} \mathrm{C}$ is converted to steam at $120.0^{\circ} \mathrm{C}$.

Chapter problem 20-66
Serway (5th ed), p. 638
A cooking vessel on a slow burner contains 10.0 kg of water and an unknown mass of ice in equilibrium at $0^{\circ} \mathrm{C}$ at time $t=0$. The temperature of the mixture is measured at various times, and the result is plotted in the figure. During the first 50.0 min , the mixture remains at $0^{\circ} \mathrm{C}$. From 50.0 min to
 60.0 min , the temperature increases to $2.00^{\circ} \mathrm{C}$. Neglecting the heat capacity of the vessel, determine the initial mass of the ice.

