

Thermodynamic state

When a system is at equilibrium under a given set of conditions, it is said to be in a definite state. For a given thermodynamic state, many of the system's properties have a specific value corresponding to that state.

Volume Change confined gas

Work = (Force)(displacement)

- = (pressure x Area)(displacement)
- = (pressure) × (Δvolume)

Work = Force x displacement

	F _{GonP}	F _{PonG}	d _y	work done by gas
expansion		•		W>0
compression				W<0

work done = area under *p*-V curve

Thermodynamic Process

-a process in which there are changes in the state of a thermodynamic system

1. ISOBARIC

constant pressure

2. ISOTHERMAL

- constant temperature
- heat flow slow enough that thermal equilibrium is maintained

3. ADIABATIC – no heat transfer

- insulation
- very quick process

 ISOCHORIC – no work done

- fixed volume
- rigid walls
- "free expansion"

Internal energy is a state function

function of state coordinates (p, V, T)
a thermodynamic system in a specific state has a unique internal energy that depends only on that state