

Heat added to a system = increase in internal energy + external work done by the system.

 $Q = (\Delta U) + W$ Q < 0 heat flows out of the body

$$Q = \Delta U + W$$
$$\Delta U = 0$$

Q = W

*system goes back to initial state

 $Q = \Delta U$

Example:

heating an airtight can filled with air on a hot stove

gas

heat gained results to less increase in temperature

 $Q = \Delta U + W$ Q = 0sys

system does work to lift the lid of the pot

compression: W<0 → increase in U

expansion: W>0 → decrease in U

Adiabatic expansion of air

- Air quickly leaking out of a balloon
- Blowing on your hand

Adiabatic compression of airRapidly pumping up a bicycle tire

