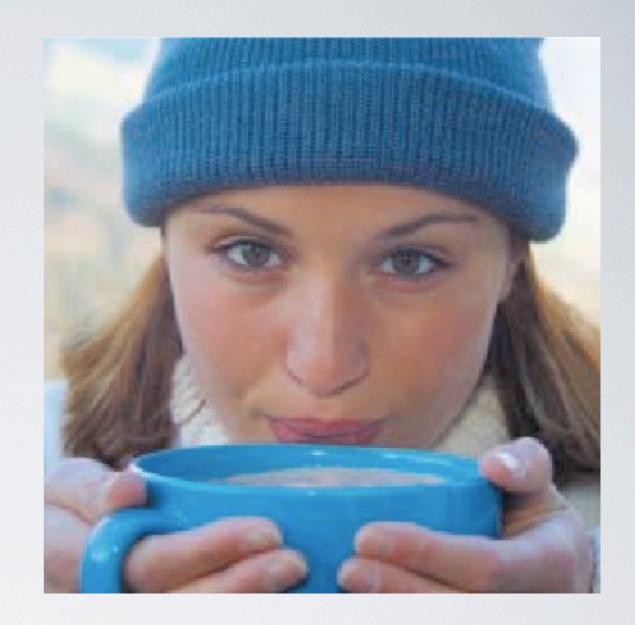
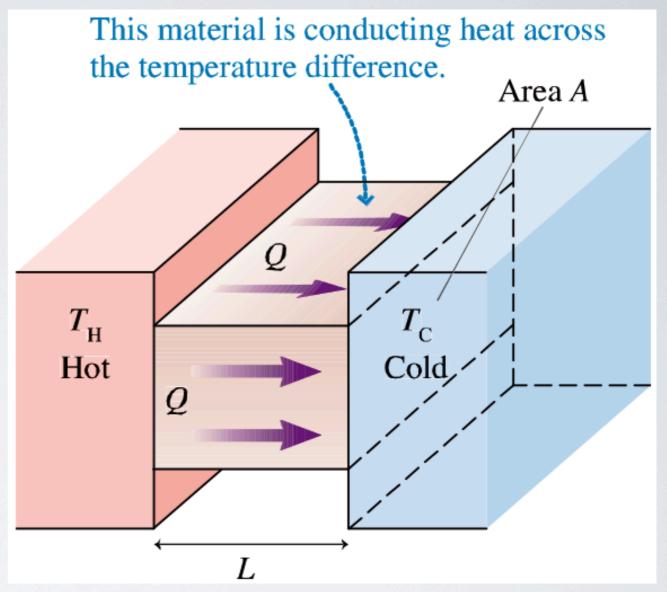

ENERGY TRANSFER MECHANISMS

When two objects are in direct contact, such as the soldering iron and the circuit board, heat is transferred by conduction.


Air currents near a warm glass of water rise, taking thermal energy with them in a process known as convection.

The lamp at the top shines on the lambs huddled below, warming them. The energy is transferred by *radiation*.



Blowing on a hot cup of tea or coffee cools it by evaporation.

Thermal conduction

$$\frac{Q}{\Delta t} = k \frac{A}{L} \Delta T$$

Conduction of heat through a solid.

Thermal conduction

$$\frac{Q}{\Delta t} = k \frac{A}{L} \Delta T$$

TABLE	20.3	Thermal Conductivities	

Substance	Thermal Conductivity (W/m·°C)
Metals (at 25°C)	
Aluminum	238
Copper	397
Gold	314
Iron	79.5
Lead	34.7
Silver	427
Nonmetals (approximate values)	
Asbestos	0.08
Concrete	0.8
Diamond	2 300
Glass	0.8
Ice	2
Rubber	0.2
Water	0.6
Wood	0.08
Gases (at 20°C)	
Air	0.023 4
Helium	0.138
Hydrogen	0.172
Nitrogen	0.023 4
Oxygen	0.023 8

Thermal conduction

$$\frac{Q}{\Delta t} = k \frac{A}{L} \Delta T$$

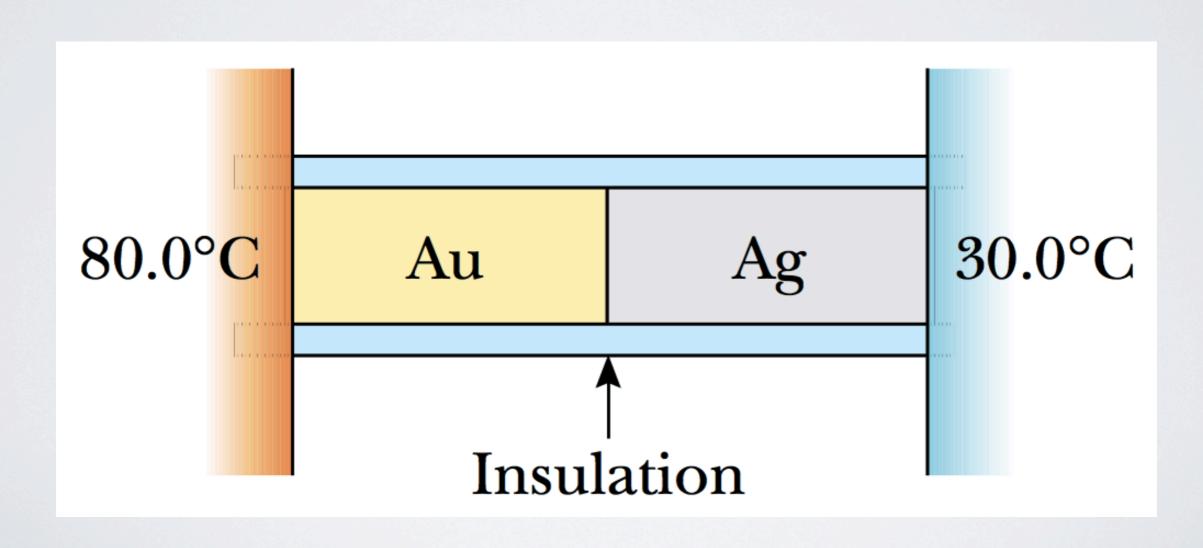

$$\mathcal{P} = \frac{A(T_2 - T_1)}{\sum_{i} R_i}$$

TABLE 20.4 R Values for Some Common Building Materials

Material	R value (ft ² ·°F·h/Btu)
Hardwood siding (1 in. thick)	0.91
Wood shingles (lapped)	0.87
Brick (4 in. thick)	4.00
Concrete block (filled cores)	1.93
Fiberglass batting (3.5 in. thick)	10.90
Fiberglass batting (6 in. thick)	18.80
Fiberglass board (1 in. thick)	4.35
Cellulose fiber (1 in. thick)	3.70
Flat glass (0.125 in. thick)	0.89
Insulating glass (0.25-in. space)	1.54
Air space (3.5 in. thick)	1.01
Stagnant air layer	0.17
Drywall (0.5 in. thick)	0.45
Sheathing (0.5 in. thick)	1.32

20.45

A bar of gold is in thermal contact with a bar of silver of the same length and area. One end of the compound bar is maintained at 80.0°C, while the opposite end is at 30.0°C. When the rate of energy transfer by conduction reaches steady state, what is the temperature at the junction?

Radiation

Stefan's Law

$$\mathcal{P} = \sigma A e T^4$$

$$\mathcal{P}_{\text{net}} = \sigma A e (T^4 - T_0^4)$$

Example

The radius of the sun is 6.96×10^8 m. At the distance of the earth, 1.50×10^{11} m, the intensity of solar radiation (measured by satellites above the atmosphere) is 1370 W/m^2 . What is the temperature of the sun's surface?