A. Complete the following table:
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline & \text { GENERAL EQUATION } & \text { STANDARD EQUATION } & \begin{array}{c}\text { PRINCIPAL } \\ \text { AXIS }\end{array} & \text { VERTEX } & \text { FOCUS } & \text { DIRECTRIX } & \text { OPENING } & \begin{array}{c}\text { LENGTH OF } \\ \text { LATUS } \\ \text { RECTUM }\end{array} \\ \hline 1 . & x^{2}-2 y=0 & & & & & & \\ \hline \text { ENDPOINTS OF } \\ \text { LATUS RECTUM }\end{array}\right\}$
B. Sketch the graph of each of the parabolas in A on a graphing paper.
C. Solve the following problems on the space below:

1. A parabolic mirror has a depth of 12 cm at the center, and the distance across the top of the mirror is 32 cm . Find the distance from the vertex to the focus.
2. A parabolic arch has a height of 20 m and a width of 36 m at the base. If the vertex of the parabola is at the top of the arch, at which height above the base is it 18 m wide?
