INTRODUCTION TO CONIC SECTIONS

Petri Español Math 5

Historical Background Menaechmus (350 B.C.) tutor to Alexander the Great credited with the discovery of conic sections around 360-350 B.C. in an attempt to solve the three famous construction problems of trisecting the angle, doubling the cube, and squaring the circle

Aristaeus (310 B.C.) first to treat conics as loci or set of points

http://www.math.rutgers.edu/~cherlin/History/Papers1999/schmarge.html http://usiweb.usi.edu/students/gradstudents/j k l/kleinknecht s/portfolio/Educ%20690 004%20ST/History%20of%20Conics.htm

Historical Background Euclid (310 B.C.) wrote 4 books on "Conics" compiled all works on conics up to his time

Archimedes (287 B.C.)

used extensive knowledge of conics to solve famous geometric problems of that time

http://www.math.rutgers.edu/~cherlin/History/Papers1999/schmarge.html http://usiweb.usi.edu/students/gradstudents/j k l/kleinknecht s/portfolio/Educ%20690_004%20ST/History%20of%20Conics.htm

Historical Background

• Apollonius (262 B.C.)

- published 8 books on conic sections
- including the 1st 4 which are compilations of the previous works on conics
- provided most of the common terms used in conics today
- clearly did the most extensive study on conics

http://www.math.rutgers.edu/~cherlin/History/Papers1999/schmarge.html

http://usiweb.usi.edu/students/gradstudents/j k l/kleinknecht s/portfolio/Educ%20690 004%20ST/History%20of%20Conics.htm

• CONE:

a 3-D surface resembling 2 ice cream cones facing opposite directions and sharing the same apex/vertex

generated by rotating a diagonal line (generator) with respect to a vertical line (axis) consists of two nappes, the upper and the lower

CONIC SECTION:

curve of intersection of a plane with a (right circular) cone type of conic depends on inclination of the plane general case produces parabola, ellipse, or hyperbola degenerate case (plane passes through apex) produces point, line, or 2 intersecting lines

• PARABOLA:

cutting plane is parallel to 1 generator
 figure consists of 1 open curve

• ELLIPSE:

cutting plane intersects all generators figure consists of 1 closed curve

Geometric Properties HYPERBOLA:

cutting plane is parallel to 2 generators
figure consists of 2 open curves

Analytic Properties CONIC SECTION: set of points in a plane the ratio of whose distances from a fixed point to its distance from a fixed line is a constant

http://mathworld.wolfram.com/ConicSectionDirectrix.html

Analytic Properties • CONIC SECTION: constant ratio is called eccentricity (denoted by e) fixed point is called focus (denoted by F) fixed line is called directrix (denoted by D) PF e ΡΓ

Analytic Properties CONIC SECTION: if e < 1, the conic is an ellipse if e = 1, the conic is a parabola if e > 1, the conic is a hyperbola

Applications

• PARABOLA:

flashlights, headlights, searchlights

- satellite dishes, antenna of radio telescope, solar furnace
- cable of a suspension bridge, arch of an arch bridge

path of a projectile

Applications

• ELLIPSE:

- astronomy (planetary orbits)
- whispering galleries (US Capitol, Mormon Tabernacle)
- roads (elliptical road, QC), pool table, football, bilobe gears

lithotripsy (blasting of stones like kidney stones)

NEW YORK CITY - The Whispering Gallery

Applications HYPERBOLA: LORAN (terrestrial navigation system) design of cooling towers gear transmission (between two skew axes) light from lamp shade sonic boom

Figure 102 Hyperboloidal gears transmit motion to a skew shaft

NEXT TOPICS:

 PARABOLA: equations (standard and general) and applications
 TRANSLATION OF AXES

ASSIGNMENT: Read TCWAG6 Section 10.1