Petri Español MATH 5

ELLIPSE

II OBJECTIVES:

- derive the standard equation of an ellipse
- use the equation of an ellipse to determine its properties
- find the equation of an ellipse given some of its properties
- express the equation of an ellipse in both the standard and general forms
- solve problems using the equation of an ellipse

ANALYTIC DEFINITION

ELLIPSE: set of all points in a plane the sum of whose distances from two fixed points is a constant.

PARTS OF AN ELLIPSE

FOCI: the two fixed points in the analytic definition, denoted by F.

PARTS OF AN ELLIPSE

PRINCIPAL AXIS: the line passing through the foci.

PARTS OF AN ELLIPSE

VERTICES: the intersection of the principal axis and the ellipse, denoted by V .

PARTS OF AN ELLIPSE

MAJOR AXIS: the line segment whose endpoints are the vertices.

PARTS OF AN ELLIPSE

CENTER: the midpoint of the major axis, denoted by C.

PARTS OF AN ELLIPSE

MINOR AXIS: the line segment perpendicular to the major axis at the center and whose endpoints are on the ellipse.

PARTS OF AN ELLIPSE

EXTREMITIES: the endpoints of minor axis, denoted by B .

PARTS OF AN ELLIPSE

DIRECTRICES: the fixed lines in the analytic definition of a general conic, denoted by D.

II EQUATION OF THE ELLIPSE

$$
\text { Let } \mathrm{CV}=\mathrm{a}, \mathrm{CB}=\mathrm{b}, \mathrm{CF}=\mathrm{c}, \mathrm{CD}=\mathrm{d}
$$

EQUATION OF THE ELLIPSE

Then, for a horizontal ellipse with $\mathrm{C}(\mathrm{o}, \mathrm{o})$, we have
$\mathrm{V}(\mathrm{a}, \mathrm{o}),(-\mathrm{a}, \mathrm{o})$
Boo, b), (o, -b)
Fec, o), (-c, o)
$D: x=d, x=-d$

EQUATION OF THE ELLIPSE

From definition:

$$
P F_{1}+P F_{2}=k
$$

EQUATION OF THE ELLIPSE

Using V_{1} as P :

$$
\begin{gathered}
\mathrm{V}_{1} \mathrm{~F}_{1}+\mathrm{V}_{1} \mathrm{~F}_{2}=\mathrm{k} \\
(\mathrm{a}-\mathrm{c})+(\mathrm{a}+\mathrm{c})=\mathrm{k} \\
2 \mathrm{a}=\mathrm{k}
\end{gathered}
$$

Hence,

$$
P F_{1}+P F_{2}=2 a
$$

EQUATION OF THE ELLIPSE

Using B_{1} as P :

$$
B_{1} F_{1}+B_{1} F_{2}=2 a
$$

But $B_{1} F_{1}=B_{1} F_{2}$ by symmetry, thus

$$
\begin{aligned}
2 B_{1} F_{1} & =2 a \\
B_{1} F_{1} & =a
\end{aligned}
$$

Hence,

$$
b^{2}=a^{2}-c^{2}
$$

EQUATION OF THE ELLIPSE

$\sqrt{(x-c)^{2}+y^{2}}+\sqrt{(x+c)^{2}+y^{2}}=2 a$

$$
\sqrt{(x+c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}}
$$

$$
(x+c)^{2}+y^{2}=4 a^{2}-4 a \sqrt{(-c)^{2}+y{ }^{2}+x(-c)^{2}+y^{2}}
$$

$$
2 x c=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}-2 x c
$$

$$
4 a \sqrt{(x-c)^{2}+y^{2}}=4 a^{2}-4 x c
$$

EQUATION OF THE ELLIPSE

$$
\begin{gathered}
\sqrt{(x-c)^{2}+y^{2}}=a-\frac{x c}{a} \\
x^{2}-2 x c+c^{2}+y^{2}=a^{2}-2 x \in \frac{x^{2} c^{2}}{a^{2}} \\
x^{2}+c^{2}+y^{2}=a^{2}+\frac{x^{2} c^{2}}{a^{2}} \\
x^{2}\left(1-\frac{c^{2}}{a^{2}}\right)+y^{2}=a^{2}-c^{2}
\end{gathered}
$$

EQUATION OF THE ELLIPSE

$$
\begin{gathered}
x^{2}\left(1-\frac{c^{2}}{a^{2}}\right)+y^{2}=a^{2}-c^{2} \\
x^{2}\left(\frac{a^{2}-c^{2}}{a^{2}}\right)+y^{2}=a^{2}-c^{2} \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1 \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{gathered}
$$

EQUATION OF THE ELLIPSE

With C: $(0,0)$
Horizontal Ellipse: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Vertical Ellipse:

EQUATION OF THE ELLIPSE

With C:(h, k)
Horizontal Ellipse:

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Vertical Ellipse:

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

EXAMPLE 1:

Find the equation of the ellipse with center (0,0), a vertex at $(5,0)$ and an extremity at (0, 4).

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

ECCENTRICITY OF THE ELLIPSE

 Recall: $e=\frac{P F}{P D}$Using B_{1} as $P, e=\frac{B_{1} F}{B_{1} D}=\frac{a}{d}$ EQ1 Using V_{1} as $P_{1} e=\frac{V_{1} F}{V_{1} D}=\frac{a-c}{d-a} \quad E Q_{2}$ Solving EO1\&2, we get $e=\frac{c}{a}$

a

FORMULAS RELATING $a, b, c, d, \& e$

$$
c^{2}=a^{2}-b^{2}
$$

$$
\mathrm{e}=\frac{\mathrm{c}}{}
$$

a

$$
d=\frac{a}{e}=\frac{a^{2}}{c}
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, and ecentricity of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
$$

$$
C:(0,0)
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, and ecentricity of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
$$

$$
V:(0,5),(0,-5)
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, and ecentricity of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
$$

$$
\mathrm{B}:(3,0),(-3,0)
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, and ecentricity of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
$$

$$
F:(0,4),(0,-4)
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, and ecentricity of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
$$

$$
D: y=25 / 4, y=-25 / 4
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, and ecentricity of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
$$

$$
e=4 / 5
$$

EXAMPLE 3:

A point moves along the cartesian plane so that its distance from the point $(1,0)$ is $1 / 2$ of its distance from the line $x=4$. What is the equation of the path of the point?

$$
\frac{x^{2}}{4}+\frac{y^{2}}{3}=1
$$

EXAMPLE 4:

What is the equation of the ellipse with a vertex at (3, -2), a corresponding focus at ($0,-2$) and a corresponding directrix at $(8,-2)$?

$$
\frac{\left(x+\frac{9}{2}\right)^{2}}{\frac{225}{4}}+\frac{(y+2)^{2}}{36}=1
$$

EXAMPLE 5:

Find the center, vertices, extremities, foci, directrices, and eccentricity of the ellipse $4 x^{2}+9 y^{2}-16 x+18 y-11=0$

$$
C:(2,-1)
$$

EXAMPLE 5:

Find the center, vertices, extremities, foci, directrices, and eccentricity of the ellipse $4 x^{2}+9 y^{2}-16 x+18 y-11=0$

$$
V:(5,-1),(-1,-1)
$$

EXAMPLE 5:

Find the center, vertices, extremities, foci, directrices, and eccentricity of the ellipse $4 x^{2}+9 y^{2}-16 x+18 y-11=0$

$$
B:(2,1),(2,-3)
$$

EXAMPLE 5:

Find the center, vertices, extremities, foci, directrices, and eccentricity of the ellipse $4 x^{2}+9 y^{2}-16 x+18 y-11=0$

$$
F:(2+\sqrt{5},-1),(2-\sqrt{5},-1)
$$

EXAMPLE 5:

Find the center, vertices, extremities, foci, directrices, and eccentricity of the ellipse $4 x^{2}+9 y^{2}-16 x+18 y-11=0$

$$
D: X=2+\frac{9 \sqrt{5}}{5}, x=2-\frac{9 \sqrt{5}}{5}
$$

EXAMPLE 5:

Find the center, vertices, extremities, foci, directrices, and eccentricity of the ellipse $4 x^{2}+9 y^{2}-16 x+18 y-11=0$

$$
e=\frac{\sqrt{5}}{3}
$$

EXAMPLE 6:

A whispering gallery has a semi-elliptic arch which is 25 ft high at the middle and 5 ft high at the ends. If the whispering points are 30 ft apart, how high is the ceiling (from the ground) above the whispering points?

$$
21 \mathrm{ft}
$$

II HOMEWORK\#2:

TCWAG6

Section 10.2 Exercises
\#s 10, 20, 26, 32, 34

