Petri Español MATH 5

HYPERBOLA

II OBJECTIVES:

- derive the standard equation of a hyperbola
- use the equation of a hyperbola to determine its properties
- find the equation of a hyperbola given some of its properties
- express the equation of a hyperbola in both the standard and general forms
- solve problems using the equation of a hyperbola

ANALYTIC DEFINITION

HYPERBOLA: set of all points in a plane the absolute value of the difference of whose distances from two fixed points is a constant.

PARTS OF A HYPERBOLA

FOCI: the two fixed points in the analytic definition, denoted by F.

PARTS OF A HYPERBOLA

PRINCIPAL AXIS: the line passing through the foci.

PARTS OF A HYPERBOLA

VERTICES: the intersection of the principal axis and the hyperbola, denoted by V .

PARTS OF A HYPERBOLA

TRANSVERSE AXIS: the line segment whose endpoints are the vertices.

PARTS OF A HYPERBOLA

CENTER: the midpoint of the transverse axis, denoted by C.

PARTS OF A HYPERBOLA

ASYMPTOTES: the lines to which the graph of the hyperbola approach.

PARTS OF A HYPERBOLA

AUXILIARY RECTANGLE: the rectangle whose vertices lie on the asymptotes of the hyperbola and whose sides contain the vertices of the hyperbola.

PARTS OF A HYPERBOLA

CONJUGATE AXIS: the line segment perpendicular to the transverse axis at the center and whose endpoints are on the auxiliary rectangle.

PARTS OF A HYPERBOLA

EXTREMITIES: the endpoints of conjugate axis axis, denoted by B.

PARTS OF A HYPERBOLA

DIRECTRICES: the fixed lines in the analytic definition of a general conic, denoted by D.

II EQUATION OF THE HYPERBOLA

EQUATION OF THE HYPERBOLA

Let $C V=a, C B=b, C F=c, C D=d$
Then, for a horizontal hyperbola with Ceo, o), we have
$V(a, o),(-a, o)$
$B(0, b),(0,-b)$
$F(c, 0),(-c, o)$
$D: x=d, x=-d$

EQUATION OF THE HYPERBOLA

From definition:

$$
\left|P F_{1}-P F_{2}\right|=k
$$

Using V_{1} as P :

$$
\begin{gathered}
\left|V_{1} F_{1}-V_{1} F_{2}\right|=k \\
|(c-a)-(c+a)|=k \\
2 a=k
\end{gathered}
$$

Hence, $\left|P F_{1}-P F_{2}\right|=2 a$

EQUATION OF THE HYPERBOLA

$$
\begin{array}{r}
\sqrt{(x-c)^{2}+y^{2}}-\sqrt{(x+c)^{2}+y^{2}}= \pm 2 a \\
-\sqrt{(x+c)^{2}+y^{2}}= \pm 2 a-\sqrt{(x-c)^{2}+y^{2}}
\end{array}
$$

$$
(x+c)^{2}+y^{2}=4 a^{2} 7 a \sqrt{\left.(\epsilon)^{2}+y^{2}+x(\epsilon)\right)^{2} y^{2}}
$$

$$
2 x c=4 a^{2} \mp 4 a \sqrt{(x-c)^{2}+y^{2}}-2 x c
$$

$$
\pm 4 a \sqrt{(x-c)^{2}+y^{2}}=4 a^{2}-4 x c
$$

EQUATION OF THE HYPERBOLA

$$
\begin{gathered}
\pm \sqrt{(x-c)^{2}+y^{2}}=a-\frac{x c}{a} \\
x^{2}-2 x c+c^{2}+y^{2}=a^{2}-2 x \in \frac{x^{2} c^{2}}{a^{2}} \\
x^{2}+c^{2}+y^{2}=a^{2}+\frac{x^{2} c^{2}}{a^{2}} \\
x^{2}\left(1-\frac{c^{2}}{a^{2}}\right)+y^{2}=a^{2}-c^{2}
\end{gathered}
$$

EQUATION OF THE HYPERBOLA

$$
\begin{gathered}
x^{2}\left(1-\frac{c^{2}}{a^{2}}\right)+y^{2}=a^{2}-c^{2} \\
x^{2}\left(\frac{a^{2}-c^{2}}{a^{2}}\right)+y^{2}=a^{2}-c^{2} \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1
\end{gathered}
$$

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \text { where } b^{2}=c^{2}-a^{2}
$$

EQUATION OF THE HYPERBOLA

With C:(0, o)
Horizontal Hyperbola: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Vertical Hyperbola :

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

EQUATION OF THE HYPERBOLA

With C:(h, k)
Horizontal Hyperbola :

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Vertical Hyperbola :

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

EXAMPLE 1:

Find the equation of the hyperbola with center (0,0), a vertex at $(5,0)$ and an extremity at (0, 4).

$$
\frac{x^{2}}{25}-\frac{y^{2}}{16}=1
$$

FORMULAS RELATING $a, b, c, d, \& e$

$$
c^{2}=a^{2}+b^{2}
$$

$$
\begin{aligned}
& e=\frac{c}{a} \\
& d=\frac{a}{e}=\frac{a^{2}}{c}
\end{aligned}
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, asymptotes, and eccentricity of the hyperbola

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
C:(0,0)
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, asymptotes, and eccentricity of the hyperbola

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
V:(3,0),(-3,0)
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, asymptotes, and eccentricity of the hyperbola

$$
\begin{aligned}
& \frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \\
& B:(0,4),(0,-4)
\end{aligned}
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, asymptotes, and eccentricity of the hyperbola

$$
\begin{aligned}
& \frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \\
& F:(5,0),(-5,0)
\end{aligned}
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, asymptotes, and eccentricity of the hyperbola

$$
\begin{gathered}
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \\
D: x=9 / 5, x=-9 / 5
\end{gathered}
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, asymptotes, and eccentricity of the hyperbola

$$
\begin{gathered}
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \\
A: y=(4 / 3) x, y=(-4 / 3) x
\end{gathered}
$$

EXAMPLE 2:

Find the center, vertices, extremities, foci, directrices, asymptotes, and eccentricity of the hyperbola

$$
\begin{array}{r}
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \\
e=5 / 3
\end{array}
$$

EXAMPLE 3:

A point moves along the cartesian plane so that its distance from the point $(4,0)$ is twice its distance from the line $x=1$. What is the equation of the path of the point?

$$
\frac{x^{2}}{4}-\frac{y^{2}}{12}=1
$$

EXAMPLE 4:

What is the equation of the hyperbola with a vertex at ($5,-2$), a corresponding focus at ($0,-2$) and a corresponding directrix the line $x=8$?

$$
\frac{\left(x-\frac{25}{2}\right)^{2}}{\frac{225}{4}}-\frac{(y+2)^{2}}{100}=1
$$

EXAMPLE 5:

Express the following equation of the hyperbola in standard form:

$$
\begin{gathered}
4 x^{2}-9 y^{2}-16 x-18 y+43=0 \\
\frac{(y+1)^{2}}{4}-\frac{(x-2)^{2}}{9}=1
\end{gathered}
$$

EXAMPLE 6:

Find an equation of the hyperbola whose foci are the vertices of the ellipse $7 \mathrm{X}^{2}+11 \mathrm{y}^{2}=77$ and whose vertices are the foci of this ellipse.

$$
\frac{x^{2}}{4}-\frac{y^{2}}{7}=1
$$

II HOMEWORK\#3:

TCWAG6

Section 10.3 Exercises

\#s 10, 20, 26, 32, 33

